Inequalities for Mixed Projection Bodies

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inequalities for Mixed Complex Projection Bodies

Complex projection bodies were introduced by Abardia and Bernig, recently. In this paper some geometric inequalities for mixed complex projection bodies which are analogs of inequalities for mixed real projection bodies are established.

متن کامل

Volume difference inequalities for the projection and intersection bodies

In this paper, we introduce a new concept of volumes difference function of the projection and intersection bodies. Following this, we establish the Minkowski and Brunn-Minkowski inequalities for volumes difference function of the projection and intersection bodies.

متن کامل

volume difference inequalities for the projection and intersection bodies

in this paper, we introduce a new concept of volumes difference function of the projection and intersection bodies. following this, we establish the minkowski and brunn-minkowski inequalities for volumes difference function of the projection and intersection bodies.

متن کامل

Inequalities for dual quermassintegrals of mixed intersection bodies

In this paper, we first introduce a new concept of dual quermassintegral sum function of two star bodies and establish Minkowski's type inequality for dual quermassintegral sum of mixed intersection bodies, which is a general form of the Minkowski inequality for mixed intersection bodies. Then, we give the Aleksandrov– Fenchel inequality and the Brunn–Minkowski inequality for mixed intersection...

متن کامل

Projection Inequalities and Their Linear Preservers

This paper introduces an inequality on vectors in $mathbb{R}^n$ which compares vectors in $mathbb{R}^n$ based on the $p$-norm of their projections on $mathbb{R}^k$ ($kleq n$). For $p>0$, we say $x$ is $d$-projectionally less than or equal to $y$ with respect to $p$-norm if $sum_{i=1}^kvert x_ivert^p$ is less than or equal to $ sum_{i=1}^kvert y_ivert^p$, for every $dleq kleq n$. For...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1993

ISSN: 0002-9947

DOI: 10.2307/2154305